Multiple Plant Surface Signals are Sensed by Different Mechanisms in the Rice Blast Fungus for Appressorium Formation

نویسندگان

  • Wende Liu
  • Xiaoying Zhou
  • Guotian Li
  • Lei Li
  • Lingan Kong
  • Chenfang Wang
  • Haifeng Zhang
  • Jin-Rong Xu
چکیده

Surface recognition and penetration are among the most critical plant infection processes in foliar pathogens. In Magnaporthe oryzae, the Pmk1 MAP kinase regulates appressorium formation and penetration. Its orthologs also are known to be required for various plant infection processes in other phytopathogenic fungi. Although a number of upstream components of this important pathway have been characterized, the upstream sensors for surface signals have not been well characterized. Pmk1 is orthologous to Kss1 in yeast that functions downstream from Msb2 and Sho1 for filamentous growth. Because of the conserved nature of the Pmk1 and Kss1 pathways and reduced expression of MoMSB2 in the pmk1 mutant, in this study we functionally characterized the MoMSB2 and MoSHO1 genes. Whereas the Momsb2 mutant was significantly reduced in appressorium formation and virulence, the Mosho1 mutant was only slightly reduced. The Mosho1 Momsb2 double mutant rarely formed appressoria on artificial hydrophobic surfaces, had a reduced Pmk1 phosphorylation level, and was nonresponsive to cutin monomers. However, it still formed appressoria and caused rare, restricted lesions on rice leaves. On artificial hydrophilic surfaces, leaf surface waxes and primary alcohols-but not paraffin waxes and alkanes- stimulated appressorium formation in the Mosho1 Momsb2 mutant, but more efficiently in the Momsb2 mutant. Furthermore, expression of a dominant active MST7 allele partially suppressed the defects of the Momsb2 mutant. These results indicate that, besides surface hydrophobicity and cutin monomers, primary alcohols, a major component of epicuticular leaf waxes in grasses, are recognized by M. oryzae as signals for appressorium formation. Our data also suggest that MoMsb2 and MoSho1 may have overlapping functions in recognizing various surface signals for Pmk1 activation and appressorium formation. While MoMsb2 is critical for sensing surface hydrophobicity and cutin monomers, MoSho1 may play a more important role in recognizing rice leaf waxes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infection-Associated Nuclear Degeneration in the Rice Blast Fungus Magnaporthe oryzae Requires Non-Selective Macro-Autophagy

BACKGROUND The rice blast fungus Magnaporthe oryzae elaborates a specialized infection structure called an appressorium to breach the rice leaf surface and gain access to plant tissue. Appressorium development is controlled by cell cycle progression, and a single round of nuclear division occurs prior to appressorium formation. Mitosis is always followed by programmed cell death of the spore fr...

متن کامل

Cell cycle-dependent regulation of plant infection by the rice blast fungus Magnaporthe oryzae

The rice blast fungus Magnaporthe oryzae forms a specialized infection structure called appressorium which uses a turgor-driven mechanical process to breach the leaf cuticle and gain entry into plant tissue. Appressorium development and plant infection are regulated by cell cycle progression and critically depend upon two, temporally separated S-phase checkpoints. Following conidial germination...

متن کامل

Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea.

Rice blast fungus (Magnaporthe grisea) forms a highly specialized infection structure for plant penetration, the appressorium, the formation and growth of which are regulated by the Mst11-Mst7-Pmk1 mitogen-activated protein kinase cascade. We characterized the MST50 gene that directly interacts with both MST11 and MST7. Similar to the mst11 mutant, the mst50 mutant was defective in appressorium...

متن کامل

Autophagic fungal cell death is necessary for infection by the rice blast fungus.

Rice blast is caused by the fungus Magnaporthe grisea, which elaborates specialized infection cells called appressoria to penetrate the tough outer cuticle of the rice plant Oryza sativa. We found that the formation of an appressorium required, sequentially, the completion of mitosis, nuclear migration, and death of the conidium (fungal spore) from which the infection originated. Genetic interv...

متن کامل

Spatial uncoupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae.

To infect plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we report that appressorium development in the rice blast fungus Magnaporthe oryzae involves an unusual cell division, in which nuclear division is spatially uncoupled from the site of cytokinesis and septum formation. The position of the appressorium septum is defined prior to mitosis by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011